The Amit–Ashurst conjecture for finite metacyclic p-groups

نویسندگان

چکیده

Abstract The Amit conjecture about word maps on finite nilpotent groups has been shown to hold for certain classes of groups. generalised says that the probability an element occurring in image a map group G is either 0, or at least 1/| |. Noting work Ashurst, we name Amit–Ashurst and show holds p -groups with cyclic maximal subgroup.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

let $g$ be a finite group‎. ‎a subset $x$ of $g$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $x$ do not commute‎. ‎in this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

ON A CONJECTURE ON AUTOMORPHISMS OF FINITE p-GROUPS

Let G be a finite p-group such that xZ(G) ⊆ x for all x ∈ G−Z(G), where x denotes the conjugacy class of x in G. Then |G| divides |Aut(G)|, where Aut(G) is the group of all automorphisms of G.

متن کامل

Hilbert Functions of Finite Group Orbits: Abelian and Metacyclic Groups

This thesis is concerned with Hilbert functions of ideals of finite group orbits, focusing in particular on abelian and metacyclic groups. Conjecture 16 in Section 4 characterizes the Hilbert functions that arise from two-dimensional representations of certain abelian groups, and a proof of the necessity of its conditions is provided. In Section 6, Proposition 18 gives a bound for the Hilbert f...

متن کامل

Automorphisms of Metacyclic p-Groups With Cyclic Maximal Subgroups

This paper deals with the determination of the automorphism group of the metacyclic p-groups, P (p,m), given by the presentation P (p,m) = 〈x, y|xpm = 1, y = 1, yxy−1 = xp+1〉 (1) where p is an odd prime number and m > 1. We will show that Aut(P ) has a unique Sylow p-subgroup, Sp, and that in fact

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European journal of mathematics

سال: 2023

ISSN: ['2199-675X', '2199-6768']

DOI: https://doi.org/10.1007/s40879-023-00644-x